SESSION 4: BREAKOUT SESSION: BRIDGING THE GAP BETWEEN PREDICTABILITY AND **CURRENT SKILL**

Chair: Jim Kinter

Rapporteurs: Dan Barrie, Heather Archambault

(many thanks for excellent notes!!)

- Scientific questions process
 - Model development and analysis of phenomena must be more closely related
 - Sub-seasonal is intersection of weather and climate time scales \rightarrow crossover opportunity for NWP and climate prediction *practices*
 - Initial states, synoptic variability comingling with ENSO, PDO, MJO, etc. → Can the perspective and different approaches in terms of diagnostics/verification of NWP and climate people be used synergistically to address this problem?
 - Initialization issues are more important for sub-seasonal prediction than for seasonal prediction
 - May be better to just predict predictable components and then use those to predict impacts
 - This is a hard problem: A lot of the S2S predictability is on sharp gradients in space and time, which introduces many difficulties
 - Need to understand post-processing that's required

- Scientific questions topics
 - Role of models' bias
 - Patterns of SST: ENSO, TAV, IOD, PDO, extratropical gradient zones
 - MJO → NAO, tornadoes & severe wx (NB: Can have high skill when MJO & NAO are quiet)
 - Stratospheric variability full range, SSW and SPV, + QBO
 - How much of NAO predictability attributable to stratosphere vs. (tropical) troposphere?
 - PNA is it predictable on subseasonal scales? Or is it noise?
 - Meridional mass circulation Rossby waves \rightarrow poleward mass transport \rightarrow cold air outbreaks
 - Transient Rossby wave packets potential for predicting extreme events; easy to mis-predict
 - Soil moisture & snow Sweet spots; spring/summer focus (predictability rebound)
 - Soil moisture and veg. phenology → contribute to precip. and circulation forecast skill
 - Sea ice (not discussed much)
 - Ocean eddies → A-PBL and O-PBL forecast skill; resolved ocean eddies produce first-order different model; non-eddy-resolving ocean models are "essentially linear"
 - Stationary Rossby wave dispersion potential for tracking precursors

- Modeling issues
 - Spatial resolution (and re-tuning methodology?)
 - Ocean-atmosphere coupling (eddy-resolving ocean?)
 - Lead-time dependent bias
 - Coupled DA and initialization (eddies too?)
 - Ensemble generation
 - Spread/skill relationship
 - Verification (flow dependence; precip., ensembles)
 - Benefit of MME (see below)
 - Reforecast ensemble size and length (e.g. issue of quality of initial states)

- Desires (no resource constraints):
 - Sufficiently high resolution in all Earth system components to resolve relevant processes without parameterization
 - Archive everything all model output, including the heating and other RHS fields – at all time steps
 - Better reanalysis/hindcasts
 - Better obs need to identify observing system gaps (time machine!)
 - Better initial conditions
 - More frequent initializations to look at flow dependent skill to make as many hindcasts as possible
 - Determine processes that lead to model biases and eliminate them

- Exploiting Multi-Model Framework
 - Run all models with same convective scheme, for example, and see what happens. Can be generalized to swapping model components
 - Test better ways to weight the NMME, e.g., flow-dependent weighting
 - Diagnose why some models are better for some phenomena
 - Understand which models are contributing the most to the phase space in terms of forecast scenarios for, say, a particular MJO event
 - More rigorously evaluate the difference in spread among the models
 - Role of compensating errors uncover "hidden" aspects of the model
 - Perform coordinated case studies across NMME

- Way forward (resource-constrained)
 - Prioritize model diversity vs. ensemble size. Need objective tests.
 - Determine optimal vertical resolution to get downward influence of stratosphere correct?
 - Is it important to maintain resolution of operational forecast models as forecasts go out in time?
 - Should we adapt the multimodel ensemble with an eye toward predicting extremes (i.e., not enough to know the ensemble mean – want the tails)?
 - How do you turn model ensemble relative frequencies into true probabilities?
 - How should CFS be run differently to address the S2S problem, given the anticipated ten-fold increase in computing power?
 - Legitimate to look to the private sector seasonal predictions are being sold a year in advance

Balancing Demands on Resources

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

The Four Questions

- Why is this night different from all other nights?
- On all other nights we eat leavened and unleaved bread. Why on this night do we eat only matzoh?
- On all other nights we eat all vegetables.
 Why on this night do we eat only bitter herbs?
- On all other nights we don't dip our food even once. Why on this night do we dip twice?
- On all other nights we eat sitting or reclining. Why on this night do we only recline?

מַה־נִּשְׁתַּנָה הַלַּיִלָה הַנָּה מִכָּל־ הַלֵּילוֹת?

שַׁבְּכָל־הַלֵּילוֹת אֲנוּ אוֹכְלִין חָמֵץ וּמֵצָה; הַלַּיִלָה הַוָּה, כַּלוֹ מַצָּה.

שַׁבְּכָל־הַלֵּילוֹת אֲנוּ אוֹכְלִין שְׁאָר יִרְקוֹת; הַלַּיִלָּה הַוָּה, מֶרוֹר.

שָׁבְּכָל־הַלֵּילוּת אֵין אֲנֹוּ מַטְבִּילִין אֲפִלּוּ פַּעַם אָחָת; הַלַּיִלָּה הַנָּה, שַׁתֵּי פִעַמִים:

שַׁבְּכָל־הַלֵּילוּת אֲנוּ אוֹכְלִין בֵּין יוֹשְׁבִין וּבִין מְסָבִּין; הַלַּיְלָה הַזָּה, כִּלָנוּ מְסָבִּין. כָּלָנוּ מְסָבִּין.

Let my models go!

The New 10 Plagues:

Top Ten S2S Prediction Problems in NMME Models

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

Topics

Predicting the predictors

- Role of models' bias
 - Predictability is a model-based quantity; models are imperfect; possible non-linear interaction between mean bias and predictability (and prediction skill)
- SST ENSO, TAV, IOD, PDO, extratropical gradient zones, in- and out-of-phase concurrency of different SST patterns
- MJO largest compact phenomenon on sub-seasonal time scale
- Stratospheric variability
 - Sudden Stratospheric Warming and Strong Polar Vortex extremes of stratospheric boreal winter circumpolar circulation
 - SSW occurs infrequently → forecast of opportunity
 - QBO very predictable, surface impact is small and not known to be predictable
 - Is there a preferred time scale for lead (lag) time? → cycle from surface disturbance to upward propagating wave activity to finite amplitude polar vortex perturbation to surface signal
- PNA is it predictable on subseasonal scales? Or is it noise?
- Meridional mass circulation Rossby waves \rightarrow poleward mass transport \rightarrow cold air outbreaks
- Transient Rossby wave packets potential for predicting extreme events, but easy to mispredict
- Soil moisture and snow Sweet spots; focus on spring and summer seasons (predictability rebound)
- Sea ice

Topics

- Predicting the impact of the predictors
 - Bias plays a role here also
 - ENSO modulates sub-seasonal signals?
 - IOD Asian monsoon, east African rainfall
 - MJO → NAO, tornadoes & severe wx
 - Can have high skill when MJO & NAO are quiet
 - SSW \rightarrow NAO
 - May be better to just predict NAO higher S/N; more general: predictable components
 - How much of NAO predictability is attributable to stratosphere and how much to (tropical) troposphere?
 - Soil moisture and veg. phenology → contribute to precip. and circulation forecast skill
 - Ocean eddies A-PBL and O-PBL forecast skill; resolved ocean eddies produce first-order different model; non-eddy-resolving ocean models are "essentially linear"
 - Stationary Rossby wave dispersion potential for tracking precursors

Process

- Model development vs. model phenomena analysis are not sufficiently closely related
- Sub-seasonal is intersection of weather and climate time scales
 crossover opportunity for NWP and climate prediction practices
- Initialization issues are more important for sub-seasonal prediction than for seasonal prediction
- Post-processing and understanding the post-processing that's required would be useful
- May be better to just predict NAO
 - Higher signal/noise
 - More generally: use predictable components
- A lot of the predictability we're talking about is on sharp gradients in space and time, which introduces many difficulties

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

Modeling Issues

- Spatial resolution (and re-tuning methodology?)
- Ocean-atmosphere coupling (eddy-resolving ocean?)
- Lead-time dependent bias
- Coupled DA and initialization (eddies too?)
- Ensemble generation
- Spread/skill relationship
- Verification (flow dependence; precip., ensembles)
- Benefit of MME
- Reforecast ensemble size and length (quality of initial states)

No Resource Constraints

- Extremely high resolution to resolve relevant processes without parameterization
- Archive everything all model output, including the heating and other RHS fields – at all time steps
- Better reanalysis/hindcasts (time machine!)
- Better obs
- Better initial conditions
- More frequent initializations to look at flow dependent skill to make as many hindcasts as possible
- What processes lead to model errors?

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

Suggestions

- Run all models with same convective scheme, for example, and see what happens
 - A model can be bad because its convective scheme is bad
 - Usual approach is to make modifications to the convective scheme, rather than change it entirely
 - Changing model physics can lead to dramatically different results
 - Even using a regional scope to understand regional scope would be very valuable
 - Same large-scale flow, but different physics configurations (remove global flow dependence)
- Exploit NMME by doing diagnostics by seeing which model does what better in what phenomena
 - Such a comparison can drive improvement of your own model
 - Why are some models better for some phenomena?
- Test better ways to weight the NMME
 - Dynamical weighting may increase skill
- Role of compensating errors uncover "hidden" aspects of the model
- Perform coordinated case studies
- Spread difference among the models
- Understand which models are contributing the most to the phase space in terms of forecast scenarios for, say, a particular MJO event
- Taking equal weighting works the best
 - Is it worth trying to improve the weighting beyond equal weighting? Is this a valid science question?
- S2S: Initial states, synoptic variability comingling with ENSO, PDO, MJO, etc.
 - Can the perspective of NWP and climate people be used synergistically to address this problem?
 - Different approaches in terms of diagnostics/verification

- 1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?
- 2. Without resource limits, how would you approach answering those questions?
- 3. How would a multi-model ensemble re-forecast contribute to answering those questions?
- 4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?

Suggested System Improvements

- Which is more important model diversity or ensemble size?
 - Not definitive sometimes model diversity is more important, sometimes ensemble size is more important
- How many vertical levels do we need to get the downward forcing of stratosphere correct?
- Is it important to preserve the higher resolution of operational forecast models as forecasts go out in time?
 - Some centers do this, and some do not
 - CFS doesn't change resolution
 - For NWP, have a discontinuity in the climate that occurs when the horizontal resolution becomes degraded in the forecast
- Should we adapt the multimodel ensemble with an eye toward predicting extremes (i.e., not enough to know the ensemble mean want the tails)?
- How do you turn model ensemble relative frequencies in to true probabilities?
- Ocean dynamics are not captured at the resolution of the models
 - Issue of stochastic physics vs. stochastic dynamics
- Worth addressing whether CFS should be run differently to address the S2S problem, given the tenfold increase in computing power?
- Legitimate to look to the private sector seasonal predictions are being made a year in advance
 - They perform direct comparison with CPC
 - Something we should be aware of

